

Mouse Artemin (ARTN) ELISA Kit

Catalog No.: RK12691

version: 2.0

This package insert must be read in its entirety before using this product

1

Introduction

The kit is a sandwich enzyme immunoassay for in vitro quantitative measurement of ARTN in mouse serum, plasma, cell culture supernatant, and other biological fluids.

Principle of the Assay

This assay employs the quantitative sandwich enzyme immunoassay technique. An antibody specific for Mouse ARTN has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any ARTN present is bound by the immobilized antibody. After washing away any unbound substances, and then a detection antibody specific for ARTN is added to the wells and binds to the combination of capture antibody ARTN in sample. Following a wash to remove any unbound combination, and enzyme conjugate is added to the wells. Following incubation and wash steps, a substrate solution is added to the wells and color develops in proportion to the amount of ARTN bound in the initial step. The color development is stopped and the absorbance is measured.

Material Provided & Storage Conditions

Unopened kits can be stored at $2-8\,^{\circ}$ C for 1 year, and opened products must be used within 1 month.

Part	Size	Cat. No.	Storage of opened/reconstituted material
Mouse ARTN Microwell Plate Coated	8 x12	RZ10761	Put the unused slats back in the aluminum foil bag with the desiccant and reseal them. They can be stored at 2-8° C for 1 month.
Mouse ARTN Standard Lyophilized	2 vials	RZ10762	It is not recommended to use again after redissolving.
Mouse ARTN Concentrated Biotin Conjugate Antibody (100x)	1 x120 μL	RZ10763	Store at 2-8°C for 1

Streptavidin-HRP Concentrated (100x)	1 х120 µL	RZ10764	Store at 2-8°C for 1
Standard/Sample Diluent (R1)	1 x20 mL	RM00023	
Biotin-Conjugate Antibody Diluent (R2)	1 x12 mL	RM00024	
Streptavidin-HRP Diluent(R3)	1 x12 mL	RM00025	Store at 2-8°C for 1 month *
Wash Buffer(25x)	1 x20 mL	RM00026	
TMB Substrate	1 x12 mL	RM00027	
Stop Solution	1 x6 mL	RM00028	
Plate Sealers	4 Strips		
Specification	1		

*Note: The specifications listed in the table are for 96T kit, and the amount of other components in the 48T kit are halved except for the standard, please be aware of this.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 630 nm or 570 nm.
- 2. Pipettes and pipette tips.
- 3. Deionized or distilled water.
- Squirt bottle, manifold dispenser, or automated microplate washer.
- 5. Incubator.
- 6. Test tubes for dilution of standards and samples.

Precautions

*For Research use only, not be used for diagnosis.

- The kit should not be used beyond the expiration date on the kit label.
- Do not mix or substitute reagents with those from other lots or other sources.
- 3. If the OD value of the sample obtained from the test exceeds the maximum detection limit of the product, please dilute the sample using the standard/sample diluent (R1) in the product. Therefore, it is recommended to pre-test the sample before formally testing the sample.
- 4. Sample addition, plate washing, incubation time, incubation temperature and other operations during the experiment will affect the final results, please strictly manage the experimental process and keep good records.
- Variations in sample collection, processing, and storage may cause sample value differences.
- Until all factors have been tested in this assay, the possibility of interference cannot be excluded.
- Reagents may be harmful, if ingested, rinse it with an excess amount of tap water.
- 8. Stop Solution contains strong acid. Wear eye, hand, and

face protection.

- To ensure the best results, please refer to the labels or instructions for storage of relevant reagent components.
- 10. Mixing of the reagents after preparation is very important for the results, but some proteins or antibodies may be very sensitive to vigorous vortexing, which may cause loss of activity, so please use vortexing with caution.
- 11. Please use sterilised consumables for reagent preparation to avoid contamination of the reagents, which may affect the final test results.
- 12. In order to ensure the best detection effect, it is not recommended to reuse the working solution of the solubilised standard protein and related reagents after freezing.
- The kit should be away from light when it is stored or incubated.
- To avoid cross contamination, please use disposable pipette tips.
- 15. Please prepare all the kit components according to the Specification. If the kits will be used several times, please seal the rest strips and preserve with desiccants. Do use up within 1 months.

16. The 48T kit is also suitable for the specification.

Sample Collection & Storage

Cell Culture Supernatant: Remove particulates by centrifugation. Assay immediately or aliquot and store samples at \leq -20 ° C. Avoid repeated freeze-thaw cycles.

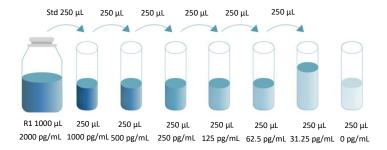
Serum: Use a serum separator tube (SST) and allow samples to clot for 30 minutes at room temperature before centrifugation for 15 minutes at $1000 \, \mathrm{xg}$. Remove serum and assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles.

Plasma: Collect plasma using EDTA or Heparin as an anticoagulant. Centrifuge for 15 minutes at 1000 xg within 30 minutes of collection. Assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles. (Note: Citrate plasma has not been validated for use in this assay.)

Other biological fluids: Centrifuge samples for 20 minutes at 1,000 xg. Collect the supernatants and assay immediately or store

samples in aliquot at $-20\,^{\circ}$ C or $-80\,^{\circ}$ C for later use. Avoid repeated freeze-thaw cycles.

Note: It is suggested that all samples in one experiment be collected at the same time of the day. Avoid hemolytic and hyperlipidemia sample for serum and plasma.


Reagent Preparation

Bring all reagents to room temperature before use. If crystals have formed in the concentrate, Bring the reagent to room temperature and mix gently until the crystals have completely dissolved.

Standard - Reconstitute the Standard Lyophilized with 1.0 mL Standard/Sample Diluent(R1). This reconstitution produces a stock solution of 2000 pg/mL. Mix the standard to ensure complete reconstitution and allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making dilutions.

Use the 2000 pg/mL standard stock to produce a dilution series (below) with Standard/Sample Diluent(R1). Mix each tube thoroughly and change pipette tips between each transfer (recommended concentration for standard curve: 2000, 1000, 500, 250, 125, 62.5, 31.25, 0 pg/mL). Use diluted standards within 60 minutes of preparation.

Working Biotin Conjugate Antibody — Dilute 1:100 of Concentrated Biotin Conjugate Antibody (100x) with Biotin-Conjugate Antibody Diluent (R2) before use, for example: Add 20 µL of Concentrated Biotin Conjugate Antibody (100x) to 1980 µL Biotin-Conjugate Antibody Diluent (R2) to prepare 2000 µL Working Biotin Conjugate Antibody Buffer.

Working Streptavidin-HRP - Dilute 1:100 of Concentrated Streptavidin-HRP (100x) with Strept0 µ L of Concentrated Streptavidin-HRP (lavidin-HRP Diluent (R3) before use, for example: Add 200x) to 1980 µL Streptavidin-HRP Diluent (R3) to prepare 2000 µL Working Streptavidin-HRP Buffer.

Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Dilute 1:25 with double distilled or deionized water before use, for example: Add 16 mL of Wash Buffer Concentrate to 384 mL of deionized or distilled water to prepare 400 mL of Wash Buffer.

Assay Procedure

Bring all reagents and samples to room temperature before use. It is recommended that all standards, controls, and samples be assayed in duplicate.

- Prepare all reagents, working standards, and samples as directed in the previous sections. Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, and reseal properly.
- 2. Add 100 µL Standard/sample Diluent (R1) in a blank well.
- Add 100 µL different concentration of standard or sample in other wells, Cover with the adhesive strip provided. Incubate for 2 hours at 37°C. record the plate layout of standards and sample assay.
- Prepare the Concentrated Biotin Conjugate Antibody (100x)
 Working Solution 15 minutes early before use.
- 5. Remove residual liquid in the wells. Add wash buffer 350 $$\mu$\,L/well,$ aspirate each well after holding 40 seconds, repeating the process two times for a total of three washes.
- Add 100 μL Working Biotin Conjugate Antibody in each well,
 cover with new adhesive Sealer provided Incubate for 1

hour at 37℃.

- Prepare the Streptavidin-HRP Concentrated (100x) Working Solution 15minutes early before use.
- 8. Repeat the aspiration/wash as in step 5.
- Add 100 µL Working Streptavidin-HRP in each well, cover with new adhesive Sealer provided. Incubate for 1 hour at 37℃.
- During the incubation, turn on the microplate reader to warm up for 30 minutes before measuring.
- 11. Repeat the aspiration/wash as in step 5.
- 12. Add 100 µL TMB Substrate to each well. Incubate for 15-20 minutes at 37℃. Protect from light.
- 13. Add 50 μL Stop Solution, determine the optical density of each well within 5 minutes, using a Microplate reader set to 450 nm. If wavelength correction is available, set to 570 nm or 630 nm. If wavelength correction is not available, subtract readings at 570 nm or 630 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may cause higher value and less accurate result.

Assay Procedure Summary

Prepare the standard and reagents

1

Add 100 µL of standards or test samples to each well Incubate for 2 hours at 37°C, then wash 3 times

1

Add 100 $\,\mu\,L$ Working Biotin Conjugate Antibody Incubate for 1 hour at 37°C, then wash 3 times

↓

Add 100 µL Working Streptavidin-HRP Incubate for 1 hour at 37°C, then wash 3 times

Add 100 µL Substrate Solution

Incubate for 15-20 min at 37°C under dark condition

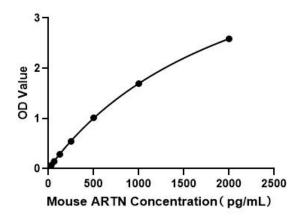
ļ

Add 50 µL Stop Solution

1

Detect the optical density within 5 minutes under 450 nm.

Correction Wavelength set at 570 nm or 630 nm



Calculation of Results

- Calculate the average OD value of the replicate wells for each concentration of standard protein, quality control, sample, etc. The OD value of each test should be subtracted from the OD value of the blank wells as well as the OD value of the sub-wavelength.
- 2. Create a standard curve by reducing the data using computer software capable of generating a four- parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the Y-axis against the concentration on the X-axis and draw a best fit curve through the points on a log/log graph. The data may be linearized by plotting the log of the ARTN concentrations versus the log of the O.D. on a linear scale, and the best fit line can be determined by regression analysis.
- If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

Typical Data

The standard curves are provided for demonstration only. A standard curve should be generated for each set of ARTN assayed.

Detection Range

31.25-2000 pg/mL

Sensitivity

The minimum detectable dose (MDD) of ARTN typically less than 15.6 pg/mL. The MDD was determined by adding two standard deviations to the mean optical density value of twenty zero standard replicates and calculating the corresponding concentration.

Specificity

This assay recognizes both recombinant and natural mouse ARTN.

The method has high sensitivity and specificity for the detection of ARTN.

There is no significant cross-reactivity or interference between ARTN and analogues.

Note:

Limited by current skills and knowledge, it is impossible for us to complete the cross-reactivity detection between ARTN and all the analogues, therefore, cross reaction may still exist.

Precision

Intra-plate Precision

3 samples with low, middle and high level ARTN were tested 20 times on one plate, respectively.

Intra-Assay: CV<10%

Inter-plate Precision

3 samples with low, middle and high level ARTN were tested on

3 different plates, 20 replicates in each plate.

Inter-Assay: CV<15%

	Intra-Assay Precision			Inter-	Assay Pre	cision
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
Mean(pg/mL)	78. 13	250	1500	78. 13	250	1500
Standard deviation	3. 28	13.00	76. 50	5. 78	13.00	106.50
CV (%)	4. 2	5. 2	5. 1	7. 4	5. 2	7. 1

Recovery

Matrices listed below were spiked with certain level of ARTN and the recovery rates were calculated by comparing the measured value to the expected amount of ARTN in samples.

Sample	Average Recovery (%)	Range (%)
Cell Culture Media(n=5)	89	84-89
Serum(n=5)	93	86-117

Linearity

The linearity of the kit was assayed by testing samples spiked with appropriate concentration of ARTN and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected.

/	/	Cell Culture Media(n=5)	Serum(n=5)
1:2	Average of Expected (%)	98	90
	Range (%)	86-116	84-91
1:4	Average of Expected (%)	105	91
	Range (%)	89-115	85-92
1:8	Average of Expected (%)	100	88
	Range (%)	80-109	88-110
1:16	Average of Expected (%)	101	107
	Range (%)	84-114	82-109

<u>Trouble Shooting</u>

Problem	Possible Cause	Solution
		Sufficiently wash plates as
		required. Ensure appropriate
	Insufficient washing	duration and number of washes.
		Ensure appropriate volume of wash
		buffer in each well.
High		Check whether the duration and
Background	Incorrect incubation	temperature of incubation are set up
	procedure	as required.
		Be careful of the operations that
	Cross-contamination of	could cause cross-contamination.
	samples and reagents	Use fresh reagents and repeat the
		tests.
		Check the concentration and
	Incorrect use of	dilution ratio of reagents. Make
	reagents	sure to use reagents in proper
		order.
No signal or		Warm the reader up before use. Make
weak signal	Incorrect use of	sure to set up appropriate main
	microplate reader	wavelength and correction
		wavelength.
	Insufficient colour	Optimum duration of colour reaction
	reaction time	should be limited to 15-25 minutes.

Leader in Biomolecular Solutions for Life Science

	Read too late after stopping the colour reaction	Read the plate in 5 minutes after stopping the reaction. Use positive control.
Too much	samples Contamination of TMB substrate	Check if TMB substrate solution turns blue. Use new TMB substrate solution.
	Plate sealers reused	Use a fresh new sealer in each step of experiments.
	Protein concentration in sample is too high	Do pre-test and dilute samples in optimum dilution ratio.
Poor Duplicates	Uneven addition of samples Impurities and precipitates in	Check the pipette. Periodically calibrate the pipette. Centrifuge samples before use.
	samples Inadequate mixing of reagents	Mix all samples and reagents well before loading.

^{*}For research purposes only. Not for therapeutic or diagnostic purposes.